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ABSTRACT

In this paper, we apply two theoretical turbulence models, DIA and the recent GISS

model, to study properties of a turbulent channel flow. Both models provide a turbulent

kinetic energy spectral function E(k) as the solution of a non-linear equation: the two

models employ the same source function but different closures. The source fu,_ction is

characterized by a rate ns(k ) which is derived from the complex eigenvalues of the

Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type.

The O-S equation is solved for a variety of Reynolds numbers cor,.evponding to avaiJable

experimental data. A physical argument _3 presented whereby _he central line velocity

characterizing the basic flow, ULo,is not to be identified with the U0 appearing in the

experimental Reynolds number. A reno:malization is suggested which has the effect of

yielding growth rates of magnitude comparable to those calculated by Orszag and Patera

based on their study of a secondary instability. From the practical point of view. this

,'enormalization frees us from having to solve the _ather time consuming equations

describing the secondary instability. This point is discussed further in XII. In the preseul

treatment, the shear plays only the role of a source of energy to f_d the turbulence and not

the possible additional role of an interaction between the shear of the mean flow and the

eddy vorticity that would give rise to resonance effects when the shear is equal to or larger

than the eddy vorticities. The inclusion of this possible resonance phenomenon, which is

not expected to affect the large eddy behavior and thus the bulk properties, is left for a

future study. The theoretical results are compared with two types of experimental data: a)

turbulence bulk properties, Table IV and b) properties that depend strongly on thee

structure of the turbulence spectrum at low wave numbers (i.e., large eddies), Tables V aad

VI. The latter data are taken from recent experiments measuring the changes in tl_c

propagation of an electromagnetic wave through a turbulent channel flow. The

fluctuations in the refractive index of the turbulent medium are thought to be due _o
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pressure fluctuations whose spectral function H(k) is contributed mostly by the intera('Tiol_

between the mean flow and the turbulent velocity. The spectrum II(k) must be computed

as a function of the wave number k, the position in the channel x2, and the width of the

channel A. The only existing analytical expression for II(k), due to Kraichnan, cannot be

used in the present case because it applies to the case x_=0 and A=oo, which corresponds to

the case of a fiat plate, not a finite channel. A general expression for II(k,x:,A) is derived

. here for the first time and employed to calculate the fraction of incoherent radiation

scattered out of a coherent beam. In Section XI, we treat anisotropy and show how to

extend the previous results to include an arbitrary degree of anisotropy in the sizes of the

eddies. We show that the theoretical one--dimensional spectra yield a better fit to the data

for a degree of anLotropy (a u 4) that is within the range of experimental values. We also

extend the expression for II(k,x2;A ) to II(k,x2;A,a ) and compute the pressure flucwations i

for different values of a. Similarly, we evaluate the fraction of electromagnetic energy

scattered by an anisotropic turbulent flow and find a good fit to the laboratory data for a

value of _ u 4 - 6.

Theoretical problems however remain which will require further study: among them.

lack of backscatter (i.e., the transfer of energy from large to small wavenumbers) in the

GISS model, possible resonance effects between the shear and eddy vorticity, behavior of

the one dimensional spectral function at low wavenumbers, and the role of the secondary

instability. These topics are now under investigation.
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I. INTRODUCTION

Experimental data on turbulent channel flow1-6 can be used to test the validity of

theoretical descriptions of turbulence. The latter can be broadly divided into two

categories: numerical simulation of the Navier-Stokes equations and theoretical closure

models.

While direct numerical simulations 7'8 have successfully _eproduced several

experimental data, they are limited to low Reynolds numbers since the number of grid

points required increases according to the 9/4 power of the Reynolds ,lumber and the

number of time steps needed for an accurate simulation increases according to the 3/4

power, yielding a rate of increase of Reynolds number to the third po_er. For high

Reynolds number flows, the required number of grid points rapidly outstrips presently

available computational facilities. To treat high Reynolds number turbulent flows, large

eddy simulations make use of (empirical) subgrid scale models. 8

Theoretical closure models can be broadly divided into two categories: single-point

and two-point closure models. The most well-known among the former is the one

originally proposed by Hanjalic and Launder (HL), 9 which proved successful in describing

several types of shear flows. The HL model provides three coupled differential equations

for the Reynolds stress tensor rl_, the energy dissipation rate e, and the turbulent kinetic

energy K, defined as the integral over all wavenumbers k of the turbulent energy spectral
• 10-1'_

function E(k). The latter is known to satisfy the following equatmn " (Ref. 9, Eq. 4.4'

Ref. 10, Eqs. 4.35 er 4.38; Ref. 12, Eq. 15.27),

-_- E(k) dk+s Ei_(k}dk+2u )dk=- T(k)dk, (1}
o o o k

4
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where s is the shear, E12 is the spectral energy function of the Reynolds stress tensor, and

T(k) is the non-linear transfer among eddies of different wavenumbers. Eq. (1) can easily

be rewritten to exhibit the energy dissipation rate, _, by extending the k integration to

• infinity and then subtracting the result from (1).

The HL model proposes an equation for this quantity which must be solved

simultaneously with (1) and with the equation for e. As previously stated, the HL model

has proven very successful in the detailed description of several types of shear flows, its

main drawback being the presence of six parameters that the model cannot determine.

! The HL model had actually been preceded by the work of Tchen 11 who suggested a

physically interesting model based on the possibility of resonance interactions when the

eddy vorticity is equal to or greater than the shear of the mean flow. The need for an

equation for E_2was bypassed, for the model suggested an expression for it in terms of E(I,:)

and T(k) themselves. Although the model introduces two free parameters, it proved

successful in predicting not only the existence of an inertial Kolomogoroff region but also

the existence of a k-1 range that was actually verified experimentally. Tchen's model is

physically attractive and it would be interesting to try and improve on it.

In the early seventies, Leslie 12 was the first to consider in det,_il the possible

application of two-point closure models to turbulent channel flow. Upon realizing the

. unmanageable complexity of the DIA equations for the general case of shear flow,13 Leslie

tried to develop a systematic program of simplifications for the two-point closure equations

by restricting the analysis to the case of anisotropic but homogeneous flow (i.e., with

constant shear) in the hope of deriving in a deductive, parameter free fashion, the empirical

one--point closure relations of Hanjalic and Launder. 9 By his own surmising, Leslie did not

5
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succeed in his attempt.

Since Leslie's work was not followed by other attempts to employ two--point closure

models to turbulent channel flow, one is left today with either the successful one--poll)', HI.

closure model which, however, contains six free parameters to be determined from

experiments, with direct numerical simulations with their intrinsic Reyi_oMs nun_t)er

limitations, or with a large eddy simulation which must rely on the use. of a subgrid scab,

model.

The model we are about to present contains no free parameters, employs (two) closure

models and, within the goals it sets for itself, can be said to be relatively successful. The

models used in this paper contain features that are common to the HL model, to Leslie's

attempt, and to Tchen's physical approach In common with the latter is the fact that our

work deals with only one equation, the one for the turbulent kinetic energy spectral

function E(k). but at the same time it differs from Tchen's work in that E_2(k) is not

written phenomenologically in terms of E(k) and T(k). Rather, it is considered in the same

spirit of the HL work. _mmely derived from an external relation, see IX'. Our model has in

common with Le_lie's approach the treatment of the non-linear transfer terms, but it

overcomes the difficulty that he had in treating anisotropy (caused by the mean flow

stretching the eddies in the streamwise direction) by adopting a less formal but physically

" i 28,29appealing approach originally proposed by Kra chnan. We first derive expressions for

all of the quantities of interest, i.e., the one-dimensional energy spectrum, the amplitude of

the pressure fluctuations, and the attenuation of a laser beam in the stretched physical

system where the wavenumbers are denoted by k'. These functions depend on E(k'). t l'e

turbulent energy spectral function in the anisotropic system. However, since presem

turbulence models only allow us to calculate the energy _pectrum, E(k), in _so_rt)pi(

systems, we have introduced an aspect ratio or anisotropy parameter, a, a measure ()f the,

6
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stretching of the eddies in the streamwise direction, such that k I = kJa, k_ = k2, a,ld k:i

- k 3. By transfornfing from the k" to the k system, we then perform the integrations in k

space. The final expressions will depend on the anisotropy parameter a which is not known

a priori but must be determined through comparison with experimental data. By

comparing predicted and experimental one---dimensional spectra, we found that the best fit

was for 4 < o < 8. The amplitude of the pressure fluctuations at the walls is most sensitive

to the value of o (since the flow tends toward isotropy at midchannel) and a vaiue of _ in

the range 4 to 6 was found to best fit the measured values. In the calculation of ,,e

attenuation of a laser beam propagating through a channel flow, we again found a best fit

to the data for a in the range of 4 to 6. The consistency of these results lends credence to

the methodology employed.

As stated earlier, we shall adopt the DIA as well as the recent GISS model. 14 The

latter has been recently tested against several types of turbulence, convection, grid

turbulence, shear, etc. In all cases considered, the results were satisfactory.

Notation: while in the DIA model the spectral energy function is denoted by E(k). in

the G[SS model use is made of the function F(k)= 2E(k).

II. THE GISS MODEL

The GISS model is based on a physical representation of the non-linear energy

transfer in a way that while reminiscent of the work of Heisenberg, 15 generalizes it in two

important aspects, as described below. Assuming the turbulence is stationary, we be_in by

writing Eq. (1) as

II ii
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k /-°°f,

_(k)=2v[ k2E(k) dk+| T(k) dk, (2
JO Jk

where

fk[ vk2J E(k)dk (3_(k) = 2 ns(k ) +
0

is tile rate of energy input into the wavenumber interval [O,k],which is partly dissipated by

molecular viscosity and partly transferred by the non-linear term, T(k). Tile DIA and

GISS models differ in tile way they describe the function T(k).

Equation (2) separates the action of the source, represented by e(k), from the action

of viscosity and the non-linearity. Clearly, the separation is not meant to imply that t(k)

does not depend on the same ingredients that enter into the right hand side of the equal ion.

it only helps in visualizing the physics of Eq. (1) more clearly. The problem then reduces

to the evaluation of the quantity ns(k), the rate at which energy is being fed into the

system. A discussion of how to compute this quantity will be given in Section IX'. For the

time being, we shall only note that the structure of ns(k ) must be such that it depends on

the source of energy for the turbulent flow, namely the shear itself. That this is indeed tile

case. will be shown in Eqs. {53)-(54).

We begin by writing the transfer term T(k) as the product of a turbulent viscosity

times a mean square vorticity, i.e.,

® k

J[ T(k)dk = vt(k)y(k) , y(k) = [ k2 F(k)dk, (41k

iii
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so that the equation describing the energy balance in a turbulent flow becomPs

((k) = [v-4=vt(k)] y(k). (5)

If one adopts the expressions

ut(k) = I [--_] dk, ((k)=e=constant, (6)
k

Eq (5) reduces to the well known Heisenberg model that successfully reproduces the

inertial subrange form of F(k) a k-5/3, when ut is greater than u.

The GISS model adoots the form of Eq,_. {4} and (5) but neith¢r of Eqs. (6). It

extends both expressions in such a way that they reduce to (6) only in the inertial

subrange. The generalization is carried out in two _teps. First, the expression for ¢(k).

rather than being taken to be a constant independent of k, is written as

k

¢(k) = I F(k) (ns(k) + uk2) dk, (7)

where vk 2 cancels the negative viscosity effects included in ns(k): the latter represents the

rate at which energy is pumped into the system in the wavenumber interval between 0 and

k. It is expected that for sufficiently large k, the integrand vanishes since n s- -uk 2,

Thereafter, dk) remains constant. Then the Heisenberg approximation, dk) = constant =

(is valid.

9
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m

The second generalization consists of writing the turbulent viscosity as

00

Fk

vt(k) = I nFc_ dk, (S)
k

where nc(k) is a correlation time between eddies, to be determiped by a closure. Equations

(7) and (8) represent a formal generalization of the Heisenberg expressions. The essence of

the GISS model is contained in a new closure, i.e. an expression relating nc(k) to F(k) and

ns(k), the latter being considered given, either from an independent calculation (see Section

IV) or self--consistently. 14

Differentiating Eq. (5) with respect to k and making use of Eqs. (7) and (8), one

obtains

ns(k ) + _ = k2vt(k ) . (9)

The GISS model closure is represented by

k_vt(k) = -,nc(k ) , (10)

which, when inserted into Eq. (9), yields an expression for nc(k) in terms of ns(k) and v(k).

namely,

B

27no(k) = ns(k ) + [n_(k) + 4"D'(k)]½ . (l l)

Substituting (11) into (9) and using (8), one obtains a non-linear differential eouation for

10
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F(k). This is _,quivalent to solving a non-linear equation for the auxiliary function V(k)
9

defined as V(k) = y(k) + _,nc(k)/2, i.e.,

k ___ (12a)
st

37nc(k ) = ns(k ) + [n_(k) + 6"_V(k)]½ . (121))

Since dy(k)/dk = k2F(k), the knowledge of V(k) yields the spectral function, F(k). Tile

paramete, 7 is the only free parameter in the model and was found to be related to the

Kolmogoroff constant Ko by the expression

F213
7= O-K6j" (13)

One can easily show that the Heisenberg model is indeed contained in the GISS

model. For eddies sufficiently removed (in k space) from the source, which acts primarily

low wavenumbers, the time scale characterizing the source, nsl, is no longer theat

dominant one. The eddy dynamics are governed primarily by the local break-up

mechanism characterized by a time scale given by the vorticity, so that when y¢ >> ns, nc

y½, and Eq. (8} reduces to the Heisenberg form given by Eq. (6), at least for a power law

F(k). At the same time, far from the source, the function dk) saturates, i.e., e(k) = e =

constant, Eq. (6). This shows that the GISS model encompasses the inertial subrange. On

the other hand, for eddies with ,¢izesof the order of the dimensions ,ff the system itself, one

• may expect that the dominant time scale would be closer to that of the soqrce, i.e. ns >>

v½ n ~ ns, and clearly _(k) isnot constant. Under these conditions, one cannot expect a

universal form for the energy spectral functi6n, since F(k) now depends on the specific form

of the stirring mechanism.

ll
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In conclusion, while the tIeisenberg n-lode! yields a _niversai F(k), the GiSS model

yields an F(k) which is a universal function of ns(k ).

IiI. THE DIA MODEL

Perhaps tile most well known of the presently available theories to describe full_

developed turbulence is Kraichnan's direct interaction approximation 16 (DIA) which in

turn has given rise to other theories which bear the same spirit. We shall not discuss here

the eddy damped quasi-normal Markovian (EDQNM) appro.,dmation, which is

phenomenological in nature, since the eddy correlation time scale (which within the DIA is

determined by solving the integral equation satisfied by the infinitesimal response function)

must be chosen using external inputs. A very complete description of EDQNM, its

successes and limitations in describing "universal" properties can be found in Ref. 17.

Since the DIA has been described in detail elsewhere, 12 we shall present only tile basic

equations for the turbulent energy spectral function. Although the DIA is a well

understood approximation to the non-linear transfer terms, 18 it can be regarded as a fully

deterministic theory without free parameters. Since the DIA formalism has in the past

been applied primarily to describe those properties of turbulence that do not depend on the

specific nature of the source function, experimental data concerning bulk properties could

not be dealt with. To include them, the DIA was recently applied with good results to a

set of model equations with a source function appropriate to high Rayleigh number

convection. 19 Perhaps the main drawback in the application of the DIA formalism to

specific cases of interest has been the rather intimidating nature of the equations describing

the turbulent energy spectral function, E(k). Moreover, with the presence of :he

infinitesimal response function G(k), one must in fact solve two coupled integral equations

12
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for I::(k) and G(k). These equations may be written 19

A

[._-ns(k)]Q(k,t-s) = 2_'If kqp b(k,q,p) dq dp

• S

[I t,x ds" G(k,s---s')Q(q,t--s')Q(p, -s )

t

- I ds"G(q,t_')Q(p,t-s')Q(k,s--s')] (i4)
"00

and

A t

[_-ns(k)l G(k,t-s)=-2r f f kqp b(k,q,p)dq dp f ds' G(q,t-s')Q(p,t---s')G(k,s-s' )
S

+ _f(t-s), (15)

where Q(k,t---s) = < ui(k,t)ui(-k,s ) >, u(k,t) is the Fourier component of the turbulent

velocity, the angular brackets denote a realization average, t and s are time variables, the

energy spectrum is given by E(k)=4_'k_Q(k,0), b(k,q,p) = (q/k)(xy+z 3) with x, y, and z

the cosines of the angles opposite k, q, and p, respectively, _f(x)is the Dirac delta function,

and the A over the wavenumber integrals indicates that the region of integration is

restricted to a subdomain in which k, q, and p form a triangle. Once the growth rate ns(k)

is specified, Eqs. (14) and (15) can be solved for the energy spectrum and the infinitesimal

response function.

13
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IV. THE RATE ns(k)

Neither the D!A nor the GISS model can be expected to fix the functional form of

ns(k ) which must be provided by considerations other than the ones that led to the

o equations for the kinetic energy spectral function F(k). Prescribing an ns(k) is physically

equivalent to prescribing an equation or a formula for the energy rate e.(k) since
p

k

e(k)=2 J[o(ns(k) +vk 2) E(k) dk, (2)

fl0 00

_= _(®) = 2 1 (ns(k)+yk2) E(k) dk = 2v I k2E(k) dk.0

Ou; model can thus be considered a two equation model, one for the kinetic energy K.

00

K - I E(k) dk, (16)

and the second equation for e(k). For a successful application of our model, the

identification of the physically correct function ns(k ) is clearly of critical importance. To

that end, let us first discuss its physical meaning. From Eq. (9), we derive that

ns(k) = k2vt(k ) - nd(k)

k

1 _"k2E(k) dk (91nd(k) = _ '

14
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i.e., the rate ns is the difference between two rates: the rate k2vt(k ) at which energy, under

tbe action of the non-linear interactions, cascades to all wavenumbers larger than the o,_e

considered (in fact, ut(k) is an integral from k to infinity), minus the rate at which energy

is injected at k from all wavenumbers less than the one considered (since the the vorticity

y(k) is an integral from 0 to k).

Since ns represents a difference of rates characterizing the fully developed turbulent

flow, i.e., long after the transition from the laminar state has occurred, it cannot a priori be .

L--T that characterized the transition betweenidentified with the instability function n s

laminarity (L) and turbulence (T), even though the processes they represent are physically

equivalent. To derive n sL-T,one has a well defined mathematical formalism, the stability

theory. To derive ns(k ) or, equivalently, e(k), one would have to construct another

equation thus making the model much more complex. We have already shown 14 that

physical arguments can be very helpful. Some general considerations are in order. First. it

is known experimentally that, for example, in thermal convection the large scale structures

that one observes at the transition do persist in the turbulent phase, i.e., their structure

survives the strongly diffusive and shearing action of a turbulent flow. This result is

perhaps not unexpected since the large scale structures have the longest lifetimes of all the

eddies and also because their structure is affected primarily by the source rather than by

the non-linear transfer interactions. Stated differently, since the largest eddies cannot

originate from even larger ones, their sole source of growth is the source itself. Second.

from a mathematical point of view it would clearly be greatly advantageous if one could

employ, even if partially, the well established mathematical framework of stability theory

to gain information about the form of the function ns(k ). Here we want to make a clear

distinction between the shape of the function ns(k ) and its amplitude. We shall propose,

and try to justify, that the former can be arrived at by the use of the Orr-Sormnerfeld

equation, while the latter can be arrived at only by providing a way to account for the

15
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presence of a turbulent flow. The latter is in fact likely to renormalize in a significant way

the amplitudes of the paramete_'s characterizing the laminar regime. This in turn

translates into a renormalization of the O-S equation itself. The success of the calculations

presented in this paper will be seen to depend to a large extent on the proper

. implementation of this renormalization procedure. Since the latter depends on the specif:c

problem at hand, it cannot be formulated in a universal fashion. Each physical problem

brings in its own characteristic features. From the point of view of trying to understand a

coinplex phenomenon like turbulence, we consider this to be an advantage, for the method

requires an understanding of the renormalization that the most prominent features of the

laminar flow have undergone. The use of an O-S type of equation to determine the

functional form of the rate ns is proposed here because such a function has features of

ahnost universal character that are bound to be. sufficiently well described by such an

approach. First, consider the shape of ns(k). For wavenumbers less than ko = l/L, where

L is the geometrical dimension of the system under consideration, there cannot be any

forcing and so ns must be less than or equal to zero. On the other hand, for large values of

k, i.e., when one deals with small eddies, the dominant mechanism is kinematic viscosity

which contributes a factor -_,k2, i.e., the function ns must become negative at some large

value of k. In Ref. 14 it was shown that the GISS model requires that for large k, ns ~ -vk -_

quite independently of its behavior at low wavenumber, i.e., of the specific mechanism that

feeds energy into the turbulent regime. One may therefore conclude that the general shape

of this function must be of the form shown in Fig. (1). In our experience with different

types of turbulence, i.e., grid turbulence, thermal convection, and shear, we have indeed

verified that the physical ns(k) has the form of Fig. (1). For example, in the case of grid

turbulence where both the kinetic energy spectral function E(k) and the non-linear transfer

term T(k) have been measured experimentally, one can derive ns(k) directly from the data

since from Eqs. (2) and (3) it follows that

16
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2ns(k ) = -_-}. (17)

The functions E(k) and T(k) are presented in Figs. (14) and (16) of Ref. 14. As one can

see, the ratio does indeed have the shape of Fig. (1).

A second, parallel argument as to the validity of an O-S type equation as a guide to

the functional form of ns can be seen by using a procedure first suggested by Synge 20

whereby the O-S equation 20-23 is formally rewritten so as to exhibit the instability

function or growth rate ns (we shall omit the superscripts L-T). The result is (see Eq. 53

below)

ns(k ) = Ar12(k) - vB(k) , (18)

which shows, as expected on physical grounds, that ns is composed of two terms: a source

term, proportional to the shear rt2, and a sink proportional to the viscosity u. The O-S

equation further predicts that the shear peaks near the walls (see Fig. 4.21 of Ref. 23), thus
I
l

implying that in that region energy is extracted from the mean flow and fed into

turbulence. Experimentally, it is known (see Fig. 5.5 of Ref. 24) that the main source of

energy production, i.e., of e(k), occurs precisely in that region. Thus, the O-S equation

predicts correctly the physically important feature of a region of instability. There, the

main physical process is intrinsically the same as the one that characterized the transition

from laminarity to turbulence. That feature has thus survived even in the presence of

turbulence, which one may hope can be accounted for by a process of renormalization for

which we shall propose two methods and show that they yield very similar results.

We choose a coordinate system in which the mean flow is in the x-direction with one

wall of the channel at y = -D and the other at y = D. Consider the well-known laminar

Poiseuille profile, 24 with y= y/D,

17
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U(y) - _ (l-j). (19)

where Ap/t is the pressure drop along the channel of width 2D (we have taken unit

density). In terms of the bulk velocity Um defined as the integral across the channel of

U(y) divided by the width of the channel, 2D, i.e.,

D2 ..._ Um DUm = _ , R m- F , (20)

Eq. (19) becomes, where L stands for linear,

U(y) = uL (1 -ff_) , ULo-'_Um , (21)

and ULois the value of U(y) at midchannel, y= O.

As one can see, in the linear regime the pressure drop is proportional to Um. This is

no longer valid in the turbulent regime, where the relation is quadratic rather than linear.

We shall propose to incorporate this physical property into (19) as a way to renormalize for

the presence of turbulence. In order to do so, it is convenient to introduce the friction

coefficient A defined as25

To= --- r0 ---D (22)A 1 :2'
Um

so that Eq. (19) becomes

18
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_Dt:_m(__/). (2:3tU(y)=l-_

While this new form does not introduce any new physics at the laminar level, being merely

a rewriting in terms of different variables, it does allow us to incorporate turbulence effects

if an additional relation for the quantity A is introduced, for example the one proposed by

Blasius, 25 i.e.,

3A = Rml/4. (24)

Eq. (23) can then be written as

U(y)=UoR(1-J), _Ro=_6--__" R2m' (25)

where UoR is the renormalized midchannel velocity. Had we assumed that Eq. (21) were

valid in the turbulent regime, we would have

uL=3 v Rm, (26)

which shows that the renormalization procedure from Eq. (21) to Eq. (25) is equivalent to

taking

uo_. Uo_--_ RmU_o. (:7)

It remains to relate Rm to the experimental Rexp,

= CoD (2S)Rexp v '

19
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where [To is the measured center line (i.e., midchannel) velocity, The relationship t,etw_,_

R and R is given by4'25m exp

(29)Rexp-R m=2.53R r, Rr= v '

3,4,25 (_=0.41, B=5.1)where tile ratio Rexp/Rr can be expressed alternatively as

llnR +B, 9.268R °'°s9 25+3.5x 10-3R (30)_: r exp ' r "

A second approach for renormalizing the laminar profile can be devised by considering that

the experimentally measured mean velocity field, U(y), does indeed retain some vestiges of

the laminar profile in the region near the walls where the energy is being produced. This

can be seen by recalling the experimental form of U(y) as given for example in Ref. 25, i.e.,

U(y)= Ur Rr (l-]j_l) Rr(1-lfll) _(10 (31a)

U(y) = U r [_lnRr(1-ly l) + 5.1] Rr(1-lfl,[)>10, (31b)

and Fig. (5.5) of Ref. 24 which shows that the maximum production occurs at the point

where the linear regime changes to the logarithmic one. To renormalize the profile (19}, we

must eliminate the pressure gradient i_ terms of some other physical characteristic of the

turbulent regime. We shall proceed as follows. Since both the profile (19) and the $,
........... rji"_

experimental one given by (31) are linear in the region where energy is being produced

most efficiently, we shall require that the slope of the two functions be the same as y goes

to -D so as to assure that the two are identical in that region. This implies that Ap/f =

U_'r/D, which in turn implies that

2O
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In this case we note that the reaormalization for ULois given by

R 2

hi Table I, we present some numerical results that show how the two renormalizations. Eq.

(27) and (33) yield similar results (r,- R3m/4/72, r2= R_r/3Rm). Considering the

empirical nature of some of the relations employed in the previous derivation, the , s

agreement of the results calculated using the two methods may be considered quite good.

It is probably not a coincidence that for Rexp=104, we get a renormalization factor

that is very close to the one first obtained by Reynolds and Tiederman 26 more than twenty e' ' '

years ago and recently reconfirmed. 27 Both studies point out that the use of the - "_,

experimental form of Uexp(y,Rexp) in the O-S equation yields stable solutions, i.e., ns<0, , '

ifit is assumed that the Reynolds number appearing explicitly in the O-S equation, RO_ S,

which is in effect a viscosity, is to be the same as the Rexp entering Ue^v..,,(y,R,_..,,)._.,vOn the

other hand, if RO_ S is left as a free parameter, unstable solutions (ns>0) can be obtained if

RO_ S ~ (10 - 15) Rexp . (34)

It is as if the effect of turbulence is equivalent to a decrease of the molecular viscosity. At

first this may sound incorrect for we know that when dealing with the mean flow equations,

the molecular viscosity is increased by the effect of turbulence and, by extrapolation, one

21
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might expect that the same would be true when considering not the equation for the m:.,, ."
. rig

.1

flow but for the turbulent flow itself. The only pheuome,_on that comes to mind that could °
{ ,

• . ', . .

play the role of an internal source of energy, thus a lowering of the viscosity, is backsc_'er. '" "

a mechanism whereby the energy in the high wavenumber regions does not cascade ,_ till ._,, , _' '

higher wavenumbers (in the direction of the increasing importance of viscosity) but s ..... ' "

scattered back to lower wavenambers, thus in effect playing against viscosity.

In conclusion, the rate ns entering in (3) is not the rate that characterizes the "

transition from laminarity to turbulence. Rather, it represents the rate at which energy is

pumped into turbulence in such a wa_ as _o satisfy (9), which represents the balance

between the rate at which such an energy is put into the system and the non-linear terms.

k:_ut, that either transfer it to higher wavenumbers or feed the same wavenumber interval

with energy from lower wavenumbers, y(k)ncl(k). The quantity ns represents ar_

instability, but one in the presence of turbulence. In the case of channel flow, a region can

be isolated near the walls where there is such an instability in the sense that the energy is

being extracted from the mean flow and given to the turbulence. In that region, the

velocity profile !s linear. We have tried to extract information about the rate at which

such energy is transferred from one type of flow to the other by using the O-S equation in

which, however, the strength of the mean flow was adjusted to match the experimental one.

In that sense, the O-S equation must be viewed more as a phenomenological tool rather

than the exact equation that it really is when one deals with the very different problem of

the transition between laminarity and turbulence.

There are, however, two other ways of looking at the rate ns. One could renounce any

attempt at deriving ns from a mathematical equation, but rather consider it as a

phenomenological function of the type

22
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ns = ns(k,a,b), (35)

where the analytical form can be taken to match Fig. 1, and where the parameters a and b

can be fixed by demanding that the total kinetic energy K and the rate e derived from the

. turbulence model match the experimental values. By adopting this procedure, one

transforms the model into one t,hat, rather than predicting the turbulent quantitie:

becomes a tool to assess the correctness of the non-linear transfer terms, i.e., the validity of

the adopted closure model. This method was successfully adopted in Ref. 14 in the case of

grid turbulence, where the predicted transfer term T(k) was found to compare rather well

with the measured value. (See Fig. 16 of Ref. 14.)

Another possible way of using the present model of turbulence is by way of inverting

the model and consider the basic equations (9)-(11) not as a tool to derive the spectral

function F(k), and thus the turbulent quantities, but rather as an equation for ns itself. In

fact using the experimentally measured one--dirriensional spectrum E_(k), one can construct

the three dimensional E(k), i.e.,

tile turbulent viscosity vt(k)

O0

- I dk]',
k

and finally the rate _c(k)=k2ut(k). Inserting these relations into (9) yields for ns _he

expression
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where

,. _ .- _L_dk (39a)
k

ko

k

+ 15 I k2El(k) dk, (39b)

k o

which can be easily computed once El(k ) is known experimentally. This procedure yields

_aiuable information on the rate at which ener_,y is being drained from the mean flow into

turbulence. At. the same time, the k dependence of ns would help in identifying, or at least

narrowing down, _,he possible types of instaoi!it:es that might be candidates. Because of

the integration from k to infinity in (39_), it is clear that a successful retrieval of ns from

the experimental data can tm carried out only when El(k ) is known over a large

wavenumber interval.

V. SOLUTION OF TIlE OIl,F,- _'_,'._,!ER.FELD ..]QU_'_':ON

i,Venow proceed to sh,_w now the, _,'o,_.J_ cat_ ,,. _a_:be (ompu.ed from the solut',._n of
• ,)q

the _ell known Orr-Sommo:f. iJ. eq_a.'i¢)n."_t'-'''' w_ose ,.er_/_.tion is briefly sketched belm_',
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n_c_dy to firm up the notation and units employed.

We begin with the Navier-Stokes equations for the total velocity v and write the

linearized equations for ui, where as before vi= Ui+ u i. Separating the other variables into

. mean and fluctuating parts, the latter being indicated by a prime, we obtain with Ui =

_ixU(Y),22

__+duvdU_y..= - Pl_x" + vV"u (40)

dv 1 _ + vV2v (41)ay

dw 1 _zz'- + vV2w (42)

where u, v. and w are the x, y, and z components, respectively, of the fluctuating velocity

and where d/dt = O/Or + U d/dx. In deriving the above equations, the mean flow

equations in the linearized limit were also used to eliminate the average pressure. Tile

average density is denoted by p. Finally, the incompressibility condition is given by

(43)

Differentiate Eq. (40) with respect to x and Eq. (41) with respect to z, add the resulting

equations and use Eq. (43) to obtain an equation containing only the velocity v.

Differentiate this result with respect to y. Next, operate with o_/o_2+_/0z 2 on Eq. (42).

Using the resulting two equations to eliminate the pressure term, we derive (' '= d2/dy 2)

[_'-_-U"(y)_] v(x,y.z) = vV%'(x,y,z). (4-i)

25
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Now assume that v has the form

v(x,y,z) = v(y) exp [i(kxx -I-kzz - kxct)] . (45)

With the notation

k 2 = k'-' + k2 (46).1. X Z'

Eq. (44) becomes the well known Orr-Sommerfeld equation, 20-23

v rd2

It is convenient to write this equation in terms of dimensionless quantities. Measuring

lengths in terms of the channel half-width, D, and velocities in terms of the laminar

centerline mean velocity, U_, we introduce the following dimensionle.cs variables:

a=kxD, _=kj.D, fl=y/D, _= u/ULo, ¢=c/U i. (48)

Eq. (47) then becomes

where ._- d/dj_ The mean flow _(_ at this point is still arbitrary. For a Poiseiulle

flow, ?z'(,,_ = 1-_ is used and the boundary conditions v = dv/dfl= 0 are imposed at

_- :_ 1. If we further define R Lby o.RL --- oR L, we obtain

26
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R Lkx = R.cos0 (50)

RL= (kx_ + k_)½ L '

then tile solution of Eq. (49) yields for a given RLthe complex eigenvalue ¢ as a function of

_. Actually, for a given _, there is a large number of discrete complex eigenvalues ¢.

However, only one of the ¢'s has a positive imaginary part for some range of _ which leads

, to growth of the instability (see Eq. 45). Defining tile growth rate ns = kxim(c) (where hn

stands for the imaginary part of the enclosed function), the solution of Eq. (49) yields

eo
ns = ]3-- _ Im(c) cos _ vs. _, (51)

for a given value of R. One can easily see that the maximum value of ns (tile most

dangerous mode) corresponds to taking cos _ = 1, i.e., kz = 0. To compare our results

with experimental data, we need to change the velocity normalization from the undisturbed

centerline mean velocity, ULo,to the experimental centerline mean velocity, Uo. This is

done by multiplying Eq. (51) by Uo/ULo= Rexp/R L. Hence, the desired growth rate is

ll,,ns
vs. k D where n. = _.lt, (52)N, ..I. '

for differen*_values of RL or, equivalently, of R = UoD/v.exp

Vl.DETERMINATION OF k9-
Y

Equation (52) is not yet the final result, for it gives ns as a function of k±. tlowever.

since homogeneity ban been assumed in the application of the DIA and in the construction

of the GISS model, they require the knowledge of the growth rate as a flmction of the total
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wavenumber, k. Channel flow is inhomogeneous in the direction perpendicular to the

channel walls (the y--direction) so that an application of the model equations requires the

construction of a wavenumber in the y--direction, i.e., ky = ky(kx). The application of a

model which assumes homogeneity to a manifestly inhomogeneous flow may be criticized

• on first principles, yet we have learned from Leslie's work 12 that the problem is

analytically a very difficult one and trade--offs must be made to simplify it in order to

make it solvable. We have kept as much as possible of the essential physics in the model

intact, consistent _ith the necessity of keeping the problem solvable. One of these

trade--offs is our inability to describe the variation in the details of the flow in the

)---direction. All of our calculated bulk properties represent an average of these properties

over the inhomogeneous direction. We therefore proceed to find a suitable relationship

between ky and k_.. Following the original work of Synge, 20 we multiply the O-S equation
lit

(47) from the left by v and integrate the result over y from -D to +D. Separating the

real and imaginary parts, one obtains for the growth rate, ns = kxlm(c ), the _xpression

kxlm(Q ) I] + 2k212t + k 'tI2.I. d. l0

ns = - v , (.53)2

I? + k±2Io2 I_ + k_Io

where

D It m It It ]Im(Q) =- -D

and

D dnv 2dIn - -D dyn Y"
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In deriving Eq. (54), we have extended Eq. (45) to u and w and have used Eq. (43} in the

form dv/dy = -i(kxU + kzw ).

Equations (53)-(55) have a simple physical interpretation. The first term is a

• "production term", since it provides the interaction between the shear s = U'(y) in the

mean flow and the Reynolds stress tensor: it gives a positive contribution to ns, see Eq. (1).

The second term is proportional to the viscosity, u, and is always negative. It must clearly

dominate at very large wavenumbers where the only remaining physical mechanism is

kinematic viscosity. As we know, the latter enters the Navier-Stokes equations in the form

-vk 2. On that basis, we shall therefore identify the coefficient of v with k2, i.e.,

k4I 2I2 +2k2I_ + ± o.k
k2 = k 2 + k2 = , (,56)

Y ± I_ + k_ I.I.

which, after some rearrangements, yields the desired result

k2i 2
k2 =I_ + ± 1, (57)

k2I2Y IT + j o

which we shall use to generate the wavenumber ky from the solutions of the O-S equation.

For the fastest growing mode (cos ¢ = 1), (57) becomes

1

I , * 2V(u ._2u + v ,_ ) d,_
-l

= (5s)

(uu+v v)d_
"l
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.2 is found to be the average of the operatorThis result is intuitively appealing since ky

d2/dy 2 over the flow in the y-direction.

VII.TIIERESULTS FOR ns(k)AND kY

6

We havesolvedtheO-S equation(49)forfourvaluesofRexp:1.23,2.86,3.0S.and5

• (x I04). The firstthreevaluescorrespondto theexperimental-;aluesof LauferI and

Hussainand Reynolds.4 InTableIf,we presentthevaluesofns(k)inunitsofn.,Eq.(52).

asa functionofthedimensionlesswavenumberkD and inTableIllwe givethevaluesofkV

vs.k . InFig.(2),we plotns/n.vs.kD fordifferentvaluesoftheReynoldsnumber.

VIII.SOLUTIONS OF THE TURBULENCE EQUATIONS

The function ns(k) was used to solve both the DIA and the GISS models, Eqs. (12)

and (14)-(15). In each case, we computed several quantities of interest that we discuss

below.

1) Turbulent energy spectral function. F(k). In Fig. (3) we plot

F(k)/F, vs. kD F,= U_D = (u2/D) R 2 (59)' exp '

calculated using the GISS model. In Fig. (4), we compare the GISS and DIA results.

2) The energy e(k). In Fig. (5) we plot the quantity

e(k)/e, vs. kD e, - U03/D--(_/D 4) R 3 (60)' exp '

where e(k) is defined in (5) and (7). (The physical units of e are erg g-1 sec-l.)

3O
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3) Tile turbulent viscosity, ut(k ). In Fig. (6) we plot

vt(k )/v, vs. kD, v, = UoD = VRexp, (61)

where vt(k ) is the turbulent viscosity defined in (8). The largest value of the turbulent

" viscosity is attained at k=k o, where ko is the smallest allowed wavenumber. Taking the

limit k-k o in Eq. (5), we obtain

ns(ko)

ut(ko) = 1:o2 (62)

4) One dimensional spectra. Both Laufer 1 and !Iussain and Reynolds 4 present their

experimental results in terms of the onr dimensional spectral energy function defined in

terms of the three dimensional F(k) as follows (see Ref. 10, E,_. 3.72.3.48, 3.47)

Et(k,) = 1 J_kk-1 F(k)(1-k_/k 2) dk. (63)

We have computed Et(kt) for the case corresponding to the experimental condition in the

Hussain and Reynolds paper, i.e., Rexp = 28600, Uo = 1350 cm sec-1, D = 3.18 cm. The

• results are presented in Fig. (7).

• On tile other hand, Laufer 1 presents his experimental data in terms of tile function

Fu_(n ) = _ El(kt) Et(kt) dk t , (64)

31

I II

1989003459-031



where 2_n - kiU o. The comparison between Laufer's measured spectrum (Rexp= 30S00.

Uo = 728 cm sec-1, D = 6.35 cm ) and the theoretical results is presented in Fig. (8).

5) Turbulent velocities and scales of turbulence. Laufer 1 and Hussain and Reynolds 4

. also provide experimental data for other quantities of interest, namely

@

a) turbulent energy,

< us > = rF(k) dk, (65)
%

b) turbulent velocity,

c) Taylor microscale Ax,

;o {; ]-'A2 = Et(kt) dk t k2tEt(kl) dk I , (67)X
0

d) turbulence macroscale, Ax,

[;o ]-'Ax = 2r Et(0 ) E(k) dk , (68)

e) Kolmogoroff scale, lo,

io= (_/0 l/' (an)
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In Table IV, we present <u2> in units of Uo2, _ •<Ux>2 in units of Uo, vt--vt(ko)in

units of UoD, e in units of Uoa/D,and Ax, Ax, and 1o in units of D. Experimental data are

included when available.

• IX. PRESSURE FLUCTUATIONS IN A TURBULENT CHANNEL FLOW

" We begin by considering that in an incompressible fluid, the pressure p(x) is given by

the solution of the Poisson's equation

_v i (x)vj(x) (70)
V2p(x) = _ p o"xi &j '

where v(x) is the total velocity, p is the constant density, and the summation convention

has been employed. If, as usual, one splits vi into a fluctuating part ui and a mean field Ui.

the right hand side of (70) is seen to contain three contributions: a term in uiuj, one in the

form uiU j, and one in UiUj. Following Kraichnan, 28'29 we shall assume that the cross

term is much smaller than the other two so that from the solution of (70), one can

construct the fluctuating pressure, i.e.,

¢ f

p2 = J d3k[HT-T(k)+ nT-M(k)]---Jdakl-I(k) (71)

_q_ere T-T indicates the contribution arising from the turbulence-turbulence interaction

and T-M indicates the one arising from the interaction between the turbulence and the

mean flow. It is a known fact, which we have verified numerically, that

liT_ M >> liT_ T . (72)
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The expression for ['IT_T was first evaluated by Batchelor. 30 The result is

II sin40 k'2dk'sinOdO (73)4r l-lw_T(k) = E(k')E(k-k') ]k - k' 14

The expression for IIT_Mis much more difficult to compute. To treat the physical problem

under consideration, we need an expression that depends not only on k but also on the

coordinate variable across the channel of finite width A, i.e.

rlT_M(k)-12T__(k,x2;A). (74)

The only expression for liT_ Mavailable in the literature is one due to Kraichnan 29 (Iris Eq.

5.20), which yields the pressure at the lower boundary of a semi-infinite medium, (a flat

plate) i.e.,

IIT_M(k,0;®) . (75)

Since we plan to study the propagation of an electromagnetic beam in a channel flow,

Kraichan's expression is not applicable to our case. We shall therefore derive the

expression for HT_M(k,x2) - IIW_M[k,x2;A).

Since in the case of a channel flow, two directions, say x I and x3, iu the plane of the

mean flow can be considered to be homogeneous, one can perform a Fourier transform of

(70) on the variables x1, x3, and w. Eq. (70) then becomes

_,_-'_- _2p(x2,_,w) = - T(x_,_,_), (76)
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where a2 -- k_ + k_, and

p(_,_,w) = (2_')-3/2 I P(x't)e-i(klxl+k3x3-_t)dxldxadt ' (77)

. Eq. (76) is a second order, inhomogeneous differential equation whose solution can be

written as

X2 X 2

a

The two constants of integration a and b must be determined by imposing the boundary

conditions

d I =0, (79)
:_2 p(_,_,w) x2=0,A

since the huid is bounded by two walls at x2 = 0 and x2 = A = 2D. The final result is

A X2
P

, where, for the sake of simplicity, we have explicitly written only the x2 dependence of T.

i.e., T(x2) = T(x2,_;,w), and where we have defined two function gl and g2 as

_¢gt(x2,x6;n) -- sinh g(x2-x 6) (81)

,. cosh _x2 (82ng2(xvx2'n) = sinh nA cosh n(A-x_). )
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By taking the limit A -_= and x2 -, 0, (80) reduces to Eq. (3.9) of Kraichnan. 29 (In th(,

case x2=0 and nonzero A, Eq. (80) does not reduce to Eq. 3.11 of Kraichnan 29 since the,

latter is missing a factor of 2 in front of the second term.) Eq. (80) is the basic ingredient

of our calculations since it gives the value of the fluctuating pressure at any given point iu

a channel of full width A=2D. From (80) we obtain, with a slight change of notation,

A A

IP(X2,_;,_)[_ = I dx I dy g2(x2,x;n)g2(x2,Y;n)<T*(x,_;,w)T(y._;.w)>

A x 2

- 2 | dx dy gl(x2,Y;n)g2(x2,x;n)<T (x,_,w)T(y,_,_)>

x2 o_I "+ dx dy gt(x2,x;n)gl(x2,y;n)<T (x,_,_)T(y,n,w)> , (83)
0

l where the star denotes complex conjugation and the angular brackets denote an ensemble

average.

As is well known, the largest contribution to T(x2) comes from the interaction of the

turbulent field with the mean flow, i.e.

T(x,t) 0Uo
= 2ps(x2)_9-_xl , (84)

where the shear s(x2) is given by
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s(x2)= _U_x2), (s._)
,.J.,n.2

sothat

<T(x,t)T(x" ,t')> = S(x2,x _,xl-x i,x3-x_,t-t" )

= -4p 2 S(X2)S(X:_)_{ R22(x2,x:_,i,,_3,t) , (86)

where it has been explicitly indicated that in the directions x I and x3 the fluid is

homogeneous, R,22 is the two point velocity correlation function, (_l = xl - xl, and

Q -- x£ - x3. Taking now

R2_(x2'x2'Q'_'a't) = (2r)-3/2 1 d2r'd_ el(s" {+ox) R22(x2,x_,k,_) (87)

and using an analogous expansion for S, we have

S(x2,x},_,w) = 4/)2 s(x2)s(x_) n_ R,i2(x2,x_,_,._) . (88)

Tile relation between <T*(x,_,w)T(ym, w)> in (83) and the quantity S(x:,x2m,_' ) is29

<T*(x,_,w)T(ym, w)> = (2r) -3/2 S(x_,xlm,_o). Using the reality of a22(x,t),we write

00

cosk_ ) R2_(k,_) (sg)R22(x2,x_,_)= •
II_---o 0

where k_n) =2rn/A. Eqs. (86)-(89) are substituted in (83) and the result is integrated

over all ,,:. Using _,herelations
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00

f P_22(k,_)dw = (2_)2 (D22(k) (90)
-'tO0

• O2_(k) = 4Er_4 _2, (911

where E(k) is tl:e velocity spectrum for homogeneous turbulence, and where

<p2(x2)> -- f Ip(x2,k,w) l2 d2_, (92)

we obtain, after a series of lengthy integrations over the variables x and y in (83), the final

result

<-'P_ = I d3k II(k'x2) (9:])

where

O0

II(k'x2) =rc_--_ 2 _" ,_ _(k2_k_n)) r (k,x2) + r'_(k,x 2) (04)
n----._

F1(k'x2)"-c°Shsinh_(JA--x2)½KA+ k_[ 1 -9:_-Z] sink_n)x2. - _-¢os k_n)x2 (9,_,"-'

F2(k'x2)=I_[1-2_--_] sinh_('}A-x2)-'cosh½cA +_ I1-2_-21c°sk_n)x2

+ _A-sin k_n)x2 , (96

38

' 1989003459-038



widl f(x) the Dirac delta function. To be consistent with the spirit of the model adopted in

this paper, the velocity profile used in performing the integrations that lead to (93) was

U(x2) = s0x2(1 - x2/A ), where So=ro/V. This gives for the shear
i

However, it is clear that the above formalism is valid for any shear.

Using the spectral functions E(k) derived from the DIA and GISS models, we have

computed the pressure spectral function II(k) and then integrated over all wavevectors k.

The resulting pressures, in units of pU2r, are presented in Figs. (9) and (10). As one can

see, for Rexp= 5000, the calculated value of the pressure at the wall is 6.31, while

experiments 31 and direct numerical simulation 32 yield a lower value, i.e. 3.22, the

discrepancy being due most likely to anisotropy effects (see XI).

X. PROPAGATION OF ELECTROMAGNETIC WAVES IN A TURBULENT

CIIANNEL FLOW

An important application of the previous formalis.r_ is to the case of propagation of a

laser beam through a turbulent channel flow medium. Of primary importance is, for

example, the evaluation of the degree of attenuation in the beam intensity I. Using the

formalism developed by Hogge etal., 33 the total beam intensity I, as a function of the

coordinates xo and Y0in tile plane perpendicular to the direction of propagation, is given by

--(A _""_dytdy2 g Yo(Y,-,v2)jjI(xo,Yo) = exp(-a_) a exp C0(p)- -ip/f xo(xl-x2) +

(_)_)
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where

w_g:_-x_+x_+y_,+:5, (99)

• p2 _-(xl_x2)2+(yl_.y_):_ , (100)

p = _---. (101)

Here. A is tile wavelength, f the focal distance, and wI the spot size. In Eq. (98), Co(P) is

its value at p = 0. Bv separating the integrandthe phase autocorrelation function and a 0

in (98) so as to exhibit the coherent and incoherent parts of the total intensity, one can

then evaluate the corresponding powers obtained by integrating the intensity over the

variables xo and 3'o. A simple integration then gives the exact result

P = P /P = 1-exp(-ag) (102)inc total

which is often written as

if2

P = ¢ , (103)

1+ a_

since in most cases a_ is smaller than unity. The quantity a_ = C0(0 ) is defined as34

L L

co, .,lco, >1,n(,Xx>
(_o4)
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whe:e

k 2

the s¢" and ,_'" integrations are over the the photon optical path of length L. which is

related to the full channel width 2D, x" = (2D/L}¢', and x" = (2D/L)¢". One of tile

integrations over optical path in (104) can be done by changing variables to sum and

difference coordinates, (t_'+_")/2 and f,'-¢" We then assume that _n is a locally

isotropic field, i.e., a function oniy of the sum coordinates, so that the integration over the

difference coordinates can be done analytically.

The function _n is defined as the spectral function of the square of the refractive

index fluctuations, i.e., for mean flow in the x I direction with the coordinate system

oriented such that x2 is the coordinate variable spanning the channel with 0 _.<x,z < A = 2D.

we have

<n'2(x2)> = I d3k en(k'x2) ' (106)

where we have taken 25

n = 1 + n' = 1 + tap, a = 7.9 ,, 108g(A)/T. (107)

Here the pressure p is measured in c.g.s, units and the temperature T in K. The sligh)

dependence on the wavelength A is represented by the function g(A), where g(A=lld = 1.

g(A=0.5#) = 1.02, and g(A=0.2#) = 1.18. It then follows that
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<p2(x_)>

<n'2(x_)> "- (oP)2 p2 - I (I)n(k'x2) d3k ' (10S)

where p is the density in cgs units. Using (71), it follows that

(I)n(k,x2) = (op) 2 II(k,x 2) . (1091

1) The quantity paU o

Using the equation of state and the sound speed cs

kN^ 8.3_xp =---_-- pT = 107pT cs = 7 12 (110)

where k is Boltzmann's constant, NA is Avogadro's number, /J the molecular weight

(gin/mole), and "rthe ratio of specific heats, we derive using (107)

paU?)= .r.M_, (ll 1)

where the constant '_. (p is in c.g.s, units) and the Mach number M are defined as

Dro
P M -- --. (112)

7. = 6.5696 7/_, Cs

2) The results

In Table V, we present the values of 10-_P, Eq. (102), calculated using Eqs. (104).

(109), and (94). The spectral function E(k) is calculated using both the GISS model and
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the DIA. For each entry, R and M, the corresponding U0, D (the channel half-width).exp

and L (optical path) can be computed from the following relations (p in atmospheres and p

in c.g.s, unit_,)

• Uo(cm/sec) = CsM = 10aM (Tp/p) ¢ (113)

v RD(cm) = rr- L(cm) = 2(1 + n2, - D(cm), (11.1)' r"uo exP

The values of tile viscosity v (in cm 2 s-l), density p (in gm cm-3), and the refractive index

nr are given in Table V. A plot of 102P versus the Mach number is displayed in Fig. (11)

for A = 2, 3, and 5 mm.

XI. ANISOTROPY ¢"

As mentioned at the end of Section IX, we believe, on the basis of Kraidman's

work? $ that the reason for the discrepancy between the calculated and measured values of

the pressure fluctuations at the wall is the lack in our calcula'Ao_i of the inclusion of

anisotropy effects induced by the mean flow. This is also believed to bt. the cause ,_f the

discrepancy between the calculated and observed one-dimensional enerzv spectra.

Kraichnan presented a simple model for an elongated edoy structure by introducing a

(constant) scale change in the direction of the mean flow. This simple model will be
!

adopted here in order to judge what qualitative effect anisotropy would have on the

. one-dimensional energy spectrum.

Following Kraichnan, 28 we introduce a transformation of scale defined by
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x_= _¢_, x_=%, x_= x3, (115a)

for the spatial coordinate variables where 1 is the streamwise direction and 2 is the

direction across the channel, and

m

kl kl= _--, k_ = k2 , k_ = k3, (ll5b)

for the wavenumber variables, where a is a constant scale factor. The primed variables in

{115), i.e., those for which the scales are stretched in the streamwise direction, are the

physical variables. Since we only know E(k) for the isotropic case (in which there is no

stretching), we derive a relationship between the velocity covariance tensors in the primed

and unprimed systems. For homogeneous and isotropic turbulence, the velocity correlation

function eli(k) is given by (Ref. 15, Eq. 3.4.12}

¢ij(k)=4Er_[6ij--_] , (116)

where (_ij is the Kronecker delta, E(k) is the energy spectrum, and

<u2> = I dak _ii(k) • (117)

The velocity covariance is a second rank covariant tensor. Applying the coordinate change

(llSb) to _ii(k) yields

_u(k') = Na2_n(k ) (118)

¢fi(k'} = No¢li(k ) , j _ 1 (llg)
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_ij(k') = N_ij(k), i,j # 1, (120)

for the velocity covariance in the k" coordinate system, where the normalization coefficient

N has been added to these expressions to insure that the mean kinetic energy is identical to

that of the original flow. The new correlation tensor now describes a flow for which all

lengths and velocities are elongated by a factor a in the x t direction. To calculate N. note

that the kinetic energy (per unit mass) in the new coordinate system is

½I Oii(k')d3k" = ½N(a2R, ' + R22 + R33) ' (121)

where Rii - f eli(k) d3k (no sum on the indices). To insure that the mean kinetic energy

is identical to the original flow, (121) is equated to ½(Rn + R.z2+ R33). For isotropic Rib

the resulting equation is solved for N and we find that

3a (122N = o2+2,

a) One-Dimensional Spectra

The one--dimensional energy spectrum in the physical coordinate system is given by

El(kl) = 2 1 d2_" ½n(k') ' (123)

where _,2 = k_2 + k_2. After changing the variable of integration to k '2 = a2kl 2 + h"'2

and taking k'-,k in the integral for ease of notation, the result for the one--dimensional

energy spectrum in the physical variables is
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3o3 IEt(kl) = _ -_ 1 - dk. (124)
i

Fig. (12) is a plot of the observed El(kl) for Rexp=30800 and that calculated using the

" DIA result. (Actually, we plot F_(n), see Eq. (64).) The scale factor a is a free

parameter and Fig. (12) displays the results for a = 1, 4, and 8.

This procedure has provided a qualitative improvement over the a = 1 result. The

turnover of the spectrum, originally occurring at n ~ 200 s-1, has moved to frequencies

(i.e., wavenumbers) beyond the lowest observed, in concert with the ebservations.

Naturally, it is not to be expected that the procedure presented here would provide a

perfect fit to the data since the mean flow may not affect all scale lengths in the same way.

However, the r_ult_ do suggest that accounting for anisotropy considerably improves the

fitting of the one-dimensional spectra.

b) Pressure Fluctuations

For the anisotropic case, the calculation of the pressure fluctuations is similar to that

done in Section IX. For the amplitude of the pressure fluctuations, we write

<P2(X_)> I d3k' II(k',x6) (125)• p2 - ,

O0

rI(k',x6) = 4s_ _ '_ 5(k_-k_ n)) k_-_,2_ Oz_(k' ) [F_(k',x6) + F_(k',x6)] (126,
n'---o0

cosh _'(t-_-x'2) _; (1 - 2 sin os k (127)
Fl(k',x_) = sinh ½_;,A + _'_[ klx2 - 2xl
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+I J "• n'21sinh _'(_,_'.'X--x_) x'
F2(k',x _) = 1 - 21_ cosh +/n'/.X + _ 1 - 2 cos k_x_

4 '
+ _in k_x_, (128)

" with (S(x) the Dirac delta function, k_n) = 2m/A, and _'_ = kl 2 + k__. In (125)-(128).

the integration variables and position variable have been written as k" and x._, respectively.

in order to emphasize that these are the physical coordinates, i.e., those stretched in the

streamwise direction. Although we only know E(k) in terms of wavenumbers from which

the stretching has been removed, we do know how to relate (I);;(k" ),jto (I)ij(k). Now change

variables in the integral from k" to k. Working in the coordinate system defined by

k t = k sin Ocos ¢, ks = k cos O, ks = k sin Osin 0, (129)

the quantities _,2 and k "_-are given by

0t2-1
_,2 = k2 sin20 (1 - ----fly-cos2¢) = k2f(¢)sin'_O, (130)

o_2-1
k '2 = ks (1 - _ sin20 cos20) - k2g(O,¢). (131)

Using d3k " = d3k/c_, we have from (125)

< p_'(x,;a)>..PZ" = -alI d3k l-l(k'x2;c_), (132)

where
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o0

_ f(¢)g2(0.¢) l_
n-- ---oo

x (r_(k,,x2)+ F2(k,,x2)), (133)

and F1 and F2 are given by (127) and (12_. Using (129) to write the delta function on k2

" as a delta function on cos 0, the 0 integratioa in (132) can be done. Since tile integrand is

synu'netric in the summation index n and the n- 0 term vanishes, we find for the

amplitude of the pressure fluctuations

<p2(x2:a)> 4N _ E(k)cos'_p _ 2 1- 2 1
p2 =_ d dk k3 f(¢) •n=l

[r_(k',x2)+ r_(k",x2)] , (13_)

where

Equation (134) was integrated numerically using the DIA spectrum for a = 4,8 and

the results for Reynolds numbers of 12300, 30800, and 50000 are displayed in Figs. (13) and

(14). Relative to the a = 1 case, the pressure at the wall is reduced by a factor of

approximately l/a, i.e., with the pressure in units of PU2r,

1
Pwall(a) u _ Pwall(a'=l) . 136)
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The pressures at mid-channel have undergone relatively small changes relative to the

isotropic (a- 1) calculation, i.e.,

Pmidch(_)_ Pmidch((:r=l)• (137)

It seems clear that the inclusion of the effects of anisotropy in the calculation of th(,

amplitude of the pressure fluctuations has greatly improved our predictions of the wall

pressures.

c) Fraction of Scattered Power, P

We have also applied the above procedure for the modeling of the effects of anisotropy

on the attenuation of a laser beam propaga'" _arough a turbulent channel flow. With the

',',action cf scattered power defined by (103) and (104), we integrated (104) over the

physical variables, usir:g the DIA spectrum and the expressions from above for the

anisotropic pressure function. The scattered fraction P was calculated for channel widths

A = 2, 3, and 5 mm at a variety of Mach numbers :_d the results are presented in Table

I v , _ ,

VI and displayed in Fig. (15) along with the experimental results 37 at these values of __._, ..

The errors on the experimental results are roughly *35%. The Mach number Mb used in

Fig. (15) is the Mach number based on the bulk velocity, Um. Using the first of (29) and

the second of {30), we find that Mb is related to the Mach number M (based on the

midchannel velocity Uo) by

o

Mb--M[: ]. (:3s)9.268 R°x°89J

It was found that the model fit the data very well with a = 6 for A = 2 mm, a = 4 for __
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= 3 mm, and a = 5 for A = 5 mm. These are the best fit results; however, within the

errors, the data can be adequately fit for a = 5. It was found that over the range 1 _<(_ <

10, the scattered fraction P decreases with a roughly as

P(c_) ,_P(a=-l)e -(a-1)/3 (139)

XII. SUMMARY AND CONCLUSIONS

By inspecting our results, it can be concluded that the GISS model and the DIA

provide a reasonable first description of both turbulent bulk properties as well as properties

that depend strongly on the large eddy part of the energy spectrum. Several reservations

and directions for future work have to be discussed.

First, the DIA yields larger values for the wall pressure and fraction of scattered

power than the GISS model. This behavior can be understood by inspecting, for example.

Eq. (94) wh_c_.,_b,ows that the largest contribution to II(k), and ultimately to P, comes

from _l_esmall k region of the turbulent energy spectrum. As one can see from Fig. 5, at

low wave numbers the GISS E(k) is "skinnier" than the one derived from DIA. This means

that the contribution to II(k) from the GISS model begins only at, say, kD =15, while in

the DIA case the contribution begins earlier, i.e., at smaller wavenumbers. (The DIA

energy spectrum extends in principle to zero wavenumber, but the integration over the

• angles in Eq. 92 and the presence of the delta function in Eq. 94 force the first contribution

to begin at kD = _r.) The physical reason behind the different low k behavior of the two

spectral functions is known. The DIA model includes backscatter, i.e., energy transferred

from the high k region into the low k region. By contrast, the present version of the GISS

model is a cascade model with no backscatter as yet. While this limitation had been

recognized in earlier work, 14'19 it had never been evidenced as clearly as in the proseat

5O
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case, since our earlier works were primarily concerned with tile description of turbulem

bulk properties which are relatively insensitive to the small k behavior of the turbulent

spectral function. Work to include backscatter in the GISS model is now in progress.

• A second comment concerns the role of shear and the way it has been treated in the

present paper. The work of Tchen 11 i,a_ demonstrated that the shear may play two roles.

" as a source of energy and as a force interacting with the eddies. While the first role is

ahvays present, the second becomes important only when the shear s is of the same order or

larger than the eddy vorticity in a given wavenumber region. When this is the case, a

resonance takes place which may be more important than the effects of non-linear transfer

an,ong the eddies, represented by the function T(k) in Eq. (2). When this type of

resonance dominates over the other forces, Tchen's model predicts the existence of a k-1

region in the energy spectrum which has indeed been observed. Our model does not include

this resonance effect, the shear playing in fact only one role, that of a source of energ.v

drained from the mean flow. This can clearly be seen by inspecting Eqs. (2)-(3) where the

presence of shear is confined entirely to the left hand side of the equation in the rate ns(k).

whose form is given by Eq. (53). It is clearly seen that of the two terms, the first, Ira(Q),

is proportional to the shear, U'(y), while the other term represents a sink due to viscosit:..

A third comment refers to the choice of the growth rate. Orszag and Patera 35

(hereafter referred to as O-P) have pointed out that the adoption of a Poiseuille flow with

a central line velocity U0 (used to construct a Reynolds number which is then identified

, with the experimental value), leads to a growth rate that, being viscid in nature is

naturally rather slow. In fact, the fastest instability occurs at around R-48000 and its

maximum value (ns/n,) is only 0.0076. O-P discovered that there is a secondary, _hree

dimensional instability that, catalyzed by the previous one, grows much fa_<ter tha_ the

original instability. The O-P discovery is an important one in many respects, bu_
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particularly when one is concerned with the problem of the transition between laminarity

and turbulence, since it explains in a natural way (i.e. without free parameters)

Pxperimentally important features that would otherwise be left unexplatned, 36 the most

important being the well known fact that linear analysis predicts a breakdown of

laminarity at Rexp=5772 while the experimental value is close to Rexp~2500. It is mucl_

less clear, however, whether the O-P secondary instability and its corresponding growth

" rate is directly relevant to our problem, where we have to deal with one important aspect

that does not enter into the O-P problematics, namely the fact alluded to previously, that

in the construction of ns for our problem we must somehow take into account the

renormalizing effect of the presence of turbulence itself. The physical model that we have

proposed in Section IV can be viewed as a way to renormalize the central line velocity due

to the presence of turbulence. Another important aspect of the physical effect brought

about by the existence of the O-P secondary waves is displayed in Figure 4 of tl,e O-P

paper, where it is shown that the growth rate versus Reynolds number curve reaches a

maximum and then saturates rather than decreasing as it would in the case of a viscid

instability. Two facts must be noticed. The maximum value of the O-P growth rate is

around 0.1, which is the same as we have obtained using our renormalization (see Fig. 3).

Secondly, as it is also clear from Fig. 3, in the region of Reynolds numbers of interest in

this problem, the growth rates have similar maxinmm values, thus indicating that we are

dealing with a region where the stabilizing effect of decreasing viscosity has not yet taken

place. The numerical similarity between our results and those of O-P constitutes,

however, no guarantee that the O-P mechanism (to generate a growth rate) and our

method are physically equivalent. Since our results for the bulk properties are in general

smaller than the experimental values, it is conceivable that the use of an O-P growth rate

together with a renormalization of some of the physical parameters, could yield better

results. Since, however, the solution of the O-P equation, whicb in turn requires the exa¢'_

solution of the Naviet'-Stokes equations for the 2--dimensional instability, would be a
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non-trivial addition to our problem, we decided in this first paper to adopt the physical

argument discussed above. Tbe use of the O-P growth rate mechanism is presently under

investigation.

In conclusion, while the use of theoretical models of turbulence has reproduce:l several

properties of turbulent channel flow, limitations have also appeared. Work to include

backscatter in the GISS model and to understand the role of the secondary instability is

now in progress.
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Table 1

Rexp R r Rm rt r2

104 500 8735 12.55 9.54

" 2 x 104 925 17659 21.00 16.15

3 x 104 1331 26633 29.00 22.20
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Table II

The growth rate ns(k ) vs. k from a solution of the Orr-Sommerfeld equation for four value,_

of the Reynolds number, R . (The unit n, is given by Eq. 52).
exp

• R = 12,300 R = 28,600 R = 30,800 R = 50,000
exp exp exp exp

kD 10ns/n . kD 10ns/n , kD 10ns/n. kD 10ns/n.

8.631 0.125 10.533 0.173 10.700 0.168 12.74 0.410

9.081 0.291 11.265 0.414 11.256 0.356 14.51 0.838

9.588 0.447 12.113 0.643 11.886 0.537 16.57 1.19

10.144 0.589 13.053 0.849 12.578 0.709 18.85 1.41

10.739 0.713 14.068 1.025 13.323 0.867 21.33 1.42

11.369 0.813 15.147 1.158 14.112 1.006 24.0 1.08

12.031 0.886 16.285 1.234 14.940 1.123 27.1 0.117

12.721 0.927 17.479 1.254 15.804 1.212

13.441 0.930 18.732 1.183 16.702 1.268

14.189 0.889 20.053 1.003 7.634 1.283

14.972 0.796 18.599 1.251

15.794 0.645 19.603 1.16fJ_

20.650 0.998

58

1989003459-058



Table III

ky as a function of k,_computed from Eq. (58) for three values of the Reynolds number.

R = 12,300 R = 30,800 R = 50,000
exp exp exp

• kD kD kD kD kD kD
± y ± y ± y

0.453 8.62 0.425 13.3 0.32 12.7

0.48 9.07 0.485 15.8 0.36 14.5

0.507 9.58 0.505 16.7 0.40 16.6

0.533 10.1 0.525 17.6 0.44 18.8

0.56 10.7 0.545 18.6 0.48 21.3

0.587 11.4 0.565 19.6 0.52 24.0

0.613 12.0 0.585 20.6 0.56 27. i

9"0.64 1,. _ 0.605 21.7

0.625 22.9
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Table IV

R = 12,300 R = 30,800 R =50.(_[)(_
exp exp exp

GISS DIA EXP GISS DIA EXP GISS
8

103<u2> 0.920 1.14 1.16 1.21 1.25

102<,,2-.
,-,x.." 1.75 1.95 3.6 1.96 2.01 3.0 2.00

104vt 6.30 5.04 4.30

lOSe 4.70 5.43 7.12 7.53 3.62 9.08

Ax 0.192 0.092 0.11 0.15 0.051 0.095 0.141

Ax 0.857 1.05 0.60 0.80 0.63 0.49

103gO 10.3 9.97 4.70
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Table V

• Values of 102P, Eq. (102),and full channel width A (in ram)

for different Mach and Reynolds numbers.
ir
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Rex p = 30800

M A GIS:; DIA

10-3 0-2, 0.1 14.3 9.04 x 1.81 × 1

0.2 7.15 3.56 x 10-3 7.23 × 10-2

" 0.286 5.00 7.38 x 10-2 0.148

0.3 4.77 8.08 x 10-2 0.162

0.4 3.58 0.144 0.289

0.477 3.00 0.205 0.410

0.5 2.86 0.225 0.450

0.6 2.38 0.324 0.649

0.7 2.04 0.438 0.883

0.715 2.00 0.459 0.920
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Rex p = 50000

M A GISS DIA

0.1 23.2 3.33 x 10-2 4.30 x 10-2

0.2 11.6 0.133 0.183

0.3 7.74 0.297 0.413

0.4 5.81 0.530 0.734

0.465 5.00 0.714 0.987

0.5 4.65 0.827 1.14

0.6 3.87 1.19 1,64

0.7 3.32 1.59 2.23

0.774 3.00 1.97 2.71

1.16 2.00 4.35 5.99

Gas properties: v = 8.6x10-2 cm2 sec-1, p = 2.07,,10-3 gm cm-3,

p = 2 atm, /z = 28 gm mole-1.

Optical properties: wavelength A = 0.53 microns, refractive index nr = 1.53.
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Table VI

Values of 10-_Pfor full channel width

A = 2, 3, and 5 ram.

A = 2 mm

m

Rexp M Mb 102 p

a=l a,=4 _=8

12,300 0.286 0.252 8.48 x 10-3 2.80 x 10-3 7.86 x 10-4

30,800 0.715 0.638 0.920 0.315 8.89 x 10-2

50,000 1.16 1.04 5.99 2.25 0.662

A = 3 mm

Rexp M Mb 10-_ p

i a=l a=4 a=8

12,300 0.190 0.168 3.77 x 10-3 1.24 x 10-3 3.49 _ 10--4

30,800 0.477 0.425 0.410 0.140 3.95 _ 10 -

50,000 0.774 0.694 2./1 1.01 0.295
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= 5 mm

Rexp M Mb 102 p

a=l o=4 _=8

12,300 0.114 0.101 1.36 ,, 10-3 4.47 x 10-4 1.26 x 10.-4

• 30,800 0.').86 0.25,5 0.148 5.05 ,, 10-2 1.42 ,, 10-.2

50,000 0.465 0.416 0.987 0.363 0.106
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FIGURE CAPTIONS

Figure 1. The expected general shape of the growth rate n(k) vs. k. At larT,'

wavenumbers, ns(k) tends to-uk 2.

Figure 2. The growth rate ns(k ) vs. k in units of n,, Eq. (52), as solution of the

Orr-Sommerfeld equation for Fexp-- 12300, 30800, and 50000.

Figure 3. The GISS turbulent energy spectral function F(k), in units of F,, Eq. (59), vs.k

for Rexp= 12300, 30800, and 50000.

Figure 4. A comparison of the GISS and DIA spectral functions for Rexp= 30800. (Same

units as in Fig. 4)

Figure 5. The energy e(k) per unit mass and time, Eq. (7), in units of e,, Eq. (60), fcr

several values of Rex p. As one may note, the function saturates very rapidly', thus

becoming independent of the wavenumber k.

Figure 6. The turbulent viscosity ut(k ) vs. k, Eq. (8), in units of u,, Eq. (61), for several

values of Rexp.

Figure 7. Comparison of the theoretical one-dimensional spectral function, Eq. (63),

vs. k I (full line), with the one measured by Hussain and Reynolds 4 for Rexp= 28600,

Uo= 1350 cm sec-1 and D = 3.18 cm.
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Figure 8. Comparison of the theoretical one--dimensional spectral function defined by [:q.

(64) with the one measured ,,y Laufer 1, corresponding to Rexp= 30800. U0="_,__(._

sec-1 and D = 6.35 cm.

Figure 9. The value of the fluctuating pressure, in units of pU_ computed from Eq. (9:3).

as a function of distance across the channel of width A=2D. The results arc,

computed using the GISS model.

Figure 10. Same as Figure 10, but computed using the DIA model.

Figure 11. The quantity 102P, Eq (102), versus M4 for three values of the

channel width A = 2, 3, 5 ram.

Figure 12. Same as Fig. 8, but also for a,=-4 and 8.

Figure 13. Same as Fig. (10), but for a = 4.

Figure 14. Same as Fig. (10), but for a = 8.

Figure 15. The quantity 10_P versus the fourth power of the bulk Math number, Me, (see

text), for three values of channel width A = 2, 3, and b mm. The best fit value of a is

shown. The experimental data are represented as v for the 5 mm results, _ for the 3

nun results, and o for the 2 mm results.
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